- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000005000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Chang, Shi (3)
-
Zou, Lei (3)
-
Gharaibeh, Nasir (2)
-
Wilkho, Rohan Singh (2)
-
Abdel-Aziz, Amal Kamal (1)
-
Abdelfatah, Sara (1)
-
Abdellatif, Mahmoud (1)
-
Abdoli, Asghar (1)
-
Abel, Steffen (1)
-
Abeliovich, Hagai (1)
-
Abildgaard, Marie H. (1)
-
Abudu, Yakubu Princely (1)
-
Acevedo-Arozena, Abraham (1)
-
Adamopoulos, Iannis E. (1)
-
Adeli, Khosrow (1)
-
Adolph, Timon E. (1)
-
Adornetto, Annagrazia (1)
-
Aflaki, Elma (1)
-
Agam, Galila (1)
-
Agarwal, Anupam (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Wilkho, Rohan Singh; Gharaibeh, Nasir G.; Chang, Shi; Zou, Lei (, Environmental Modelling & Software)
-
Chang, Shi; Wilkho, Rohan Singh; Gharaibeh, Nasir; Sansom, Garett; Meyer, Michelle; Olivera, Francisco; Zou, Lei (, Natural Hazards)
-
Yiling Qiao, Chang Shi (, Electronic Imaging)Semi-supervised learning uses underlying relationships in data with a scarcity of ground-truth labels. In this paper, we introduce an uncertainty quantification (UQ) method for graph-based semi-supervised multi-class classification problems. We not only predict the class label for each data point, but also provide a confidence score for the prediction. We adopt a Bayesian approach and propose a graphical multi-class probit model together with an effective Gibbs sampling procedure. Furthermore, we propose a confidence measure for each data point that correlates with the classification performance. We use the empirical properties of the proposed confidence measure to guide the design of a humanin-the-loop system. The uncertainty quantification algorithm and the human-in-the-loop system are successfully applied to classification problems in image processing and ego-motion analysis of body-worn videos.more » « less
-
Klionsky, Daniel J.; Abdel-Aziz, Amal Kamal; Abdelfatah, Sara; Abdellatif, Mahmoud; Abdoli, Asghar; Abel, Steffen; Abeliovich, Hagai; Abildgaard, Marie H.; Abudu, Yakubu Princely; Acevedo-Arozena, Abraham; et al (, Autophagy)
An official website of the United States government
